Microfabricated Physical Spatial Gradients for Investigating Cell Migration and Invasion Dynamics
نویسندگان
چکیده
We devise a novel assay that introduces micro-architectures into highly confining microchannels to probe the decision making processes of migrating cells. The conditions are meant to mimic the tight spaces in the physiological environment that cancer cells encounter during metastasis within the matrix dense stroma and during intravasation and extravasation through the vascular wall. In this study we use the assay to investigate the relative probabilities of a cell 1) permeating and 2) repolarizing (turning around) when it migrates into a spatially confining region. We observe the existence of both states even within a single cell line, indicating phenotypic heterogeneity in cell migration invasiveness and persistence. We also show that varying the spatial gradient of the taper can induce behavioral changes in cells, and different cell types respond differently to spatial changes. Particularly, for bovine aortic endothelial cells (BAECs), higher spatial gradients induce more cells to permeate (60%) than lower gradients (12%). Furthermore, highly metastatic breast cancer cells (MDA-MB-231) demonstrate a more invasive and permeative nature (87%) than non-metastatic breast epithelial cells (MCF-10A) (25%). We examine the migration dynamics of cells in the tapered region and derive characteristic constants that quantify this transition process. Our data indicate that cell response to physical spatial gradients is both cell-type specific and heterogeneous within a cell population, analogous to the behaviors reported to occur during tumor progression. Incorporation of micro-architectures in confined channels enables the probing of migration behaviors specific to defined geometries that mimic in vivo microenvironments.
منابع مشابه
shRNA-mediated downregulation of α-N-Acetylgalactosaminidase inhibits migration and invasion of cancer cell lines
Objective(s): Extracellular matrix (ECM) is composed of many kinds of glycoproteins containing glycosaminoglycans (GAGs) moiety. The research was conducted based on the N-Acetylgalactosamine (GalNAc) degradation of ECM components by α-N-acetylgalactosaminidase (Nagalase) which facilitates migration and invasion of cancer cells. This study aims to investigate the effects of Naga-shRNA downregula...
متن کاملNew techniques and methods in the study of the invasion, cell migration and MMPs activity in vitro and in animal models
Background & Objective: Cancer metastasis is the primary cause of cancer morbidity and mortality, it accounts for about 90% of cancer deaths. Cancer treatment has improved significantly, due to early detection and inhibition of cancer growth. The ability to invade and migrate is important in malignant tumor cells. The study of cell migration is valuable in cancer diagnosis, prognosis, drug dev...
متن کاملInvestigating the Evolution of Spatial Structure Patterns of Migration in West-Azerbaijan Province
Migration and quality of redistribution of population across country is one of the main factors that planners take into account to control population and guide its movements to economic poles. Scientific recognition of migration phenomenon is important for managing and policy making in the country. These movements change migration pattern, in a way that along with increase in population and the...
متن کاملN-myc downstream regulated gene 2 overexpression reduces matrix metalloproteinase-2 and -9 activities and cell invasion of A549 lung cancer cell line in vitro
Objective(s):N-myc downstream regulated gene 2 (NDRG2) is a candidate gene for tumor suppression. The expression of NDRG2 is down-regulated in several tumors including lung cancer. The aim of this study was to explore the effect of NDRG2 overexpression on invasion, migration, and enzymatic activity of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in human lung adenocarcinoma A549 cells. Ma...
متن کاملCell migration and polarity on microfabricated gradients of extracellular matrix proteins.
This paper explores the effects of the surface density and concentration profiles of extra cellular matrix proteins on the migration of rat intestinal IEC-6 cells. Microfluidic devices were used to create linear, immobilized gradients of laminin. This study investigated both the impact of the steepness and local concentrations on the directedness of cell migration. The bulk concentrations of pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011